Interesting article on the (mis)use of statistics in science over at Science News:

“There is increasing concern,” declared epidemiologist John Ioannidis in a highly cited 2005 paper in PLoS Medicine, “that in modern research, false findings may be the majority or even the vast majority of published research claims.”

...

Nobody contends that all of science is wrong, or that it hasn’t compiled an impressive array of truths about the natural world. Still, any single scientific study alone is quite likely to be incorrect, thanks largely to the fact that the standard statistical system for drawing conclusions is, in essence, illogical. “A lot of scientists don’t understand statistics,” says Goodman. “And they don’t understand statistics because the statistics don’t make sense.”

...

How could so many studies be wrong? Because their conclusions relied on “statistical significance,” a concept at the heart of the mathematical analysis of modern scientific experiments.

...

Statisticians perpetually caution against mistaking statistical significance for practical importance, but scientific papers commit that error often. Ziliak studied journals from various fields — psychology, medicine and economics among others — and reported frequent disregard for the distinction.

“I found that eight or nine of every 10 articles published in the leading journals make the fatal substitution” of equating statistical significance to importance, he said in an interview. Ziliak’s data are documented in the 2008 book The Cult of Statistical Significance, coauthored with Deirdre McCloskey of the University of Illinois at Chicago.

## Add new comment